Q.P. 0	Code:	19EE	20202
--------	-------	-------------	--------------

Reg. No:

Time: 3 hours

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations December-2021

ELECTRICAL CIRCUITS-II

(Electrical and Electronics Engineering)

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a Derive the relationship between Phase and Line voltages, currents in star L3 6M connected load.
 - **b** A three phase balanced delta connected load of $(4+j8) \Omega$ is connected across a L3 6M 400V, 3- ϕ balanced supply. Determine the phase currents and line currents. And also power drawn by the load. Assume RYB phase sequence.

OR

- 2 a Derive the relationship between Phase and Line voltages, currents in delta L3 6M connected load.
 - **b** An unbalanced 4-wire star connected load has a balanced voltage of 400V. The L3 6M load are $Z1=(4+j8)\Omega$, $Z2=(5+j4)\Omega$, $Z3=(15+j20)\Omega$. Calculate line currents, current in neutral wire, total power.

UNIT-II

3	a	Derive the transient response of an RL circuit with AC excitation.	L4	6M
	b	Derive the transient response of an RC circuit with DC excitation.	L4	6M

OR

- 4 a A series RC circuit consists of resistor of 10Ω and capacitor of 0.1F has a constant L3 6M voltage of 20v is applied to the circuit at t=0.obtain the current equation. Determine the voltage across the resistor and the capacitor.
 - **b** In the circuit shown in fig. Determine the complete solution for the current when L3 6M switch is closed at t=0, applied voltage is $V(t)=50\cos(102t+\pi/4)$, resistance R=10 Ω and capacitance c=1 μ F.

UNIT-III

5 a Determine current in 10Ω resistor for the following network by using nodal L3 6M analysis.

Dage 1 of 3

Q.P. Code: 19EE0202

b Determine current in 5Ω resistor for the circuit shown in figure.

L1 **6M**

R19

L3.

6M

6	a	i. Define graph.	L1	6M
		ii. Define planar and non-planar graph.		
		iii. Define duality.		
	b	i. Define cut-set.	L1	6M
		ii. Define tie-set.		
		iii. What is network topology?		
		UNIT-IV		
7	a	Derive the expressions for Z-parameters in terms of ABCD parameters.	L3	6M
	b	Derive the expressions for Y-parameters in terms of ABCD parameters?	L3	6M
		OR		
8	a	Derive the expressions for h-parameters of a two port network?	L3	6M
	b	Derive the expressions for transmission parameters of a two port network?	L3	6M
UNIT-V				
9	a	A 500 Ω resister, a 16mh inductor, and a 25 nF capacitor are connected in parallel	L4	6M
		which is placed in series with a 2000 Ω resistor. Express the impedance of this		
		series combination as a rational function of s.		
	b	A 1K Ω resistor is in series with a 500mH inductor. This series combination is in	L4	6M
		parallel with a 0.4µF capacitor. Express the equivalent s-domain impedance of		
		these parallel branches as a rational functional.		
		OR		
10	a	The unit impulse response of a circuit is	L3	6M
		$v_o(t) = 10,000e^{-70t} \cos(240t + \theta)u(t)V$ Where $\tan\theta = \frac{7}{24}$		
		Find the transfer function of the circuit.		
	b	The unit impulse response of a circuit is	L3	6M
		$v_o(t) = 10,000e^{-70t} \cos(240t + \theta)u(t)V$ Where $\tan\theta = \frac{7}{24}$		
		Find the unit step response of the circuit.		

*** END ***